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Space-eigenvalue problems in the kinetic theory of gases 
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The existence of elementary, exponential solutions of the linear Boltzmann 
equation for gases is examined. Using the hard-sphere model of scattering, it is 
found that, in problems involving velocity perturbations, there are no discrete 
non-zero eigenvalues. Thus the relaxation to the asymptotic distribution is non- 
exponential and is described by the continuum eigenfunctions. For temperature 
perturbations, however, we find two non-zero discrete eigenvalues whose values 
are & 0.975 in units of the minimum scattering cross-section. Relaxation to the 
asymptotic distribution is therefore exponential, although still very rapid. 

The conclusions stated above are based upon a truncation of the scattering 
kernel and a subsequent numerical solution of the resulting integral equations. 

1. Introduction 
The perturbations introduced into the molecular distribution function of a 

gas due to temperature and velocity gradients were studied many years ago 
by Maxwell and by Boltzmann, both of whom obtained the well-known propor- 
tionality relationships between heat flow and temperature gradient, and pressure 
tensor and velocity gradient. These calculations were made more precise by 
Chapman (1917) and Enskog (191 l), who were able to devise a method for solving 
the non-linear Boltzmann equation in an infinite expanse of gas sustaining small 
velocity and temperature gradients. Unfortunately, such solutions are of an 
asymptotic nature and throw very little light on the behaviour of a gas in the 
neighbourhood of a wall or solid boundary. However, through the work of 
Kramers (1949), Wang-Chang & Uhlenbeck (1953, 1954, 1956), Mott-Smith 
(1954) and Welander (1954) it  has been shown that the presence of a wall modifies 
the distribution function, obtained by Chapman & Enskog, up to several mean 
free paths from the boundary. This surface region is called the Knudsen layer, 
and the manner and rate at  which the distribution function changes within it 
is of considerable interest. 

The recent advances in kinetic theory have been concerned with a greater 
understanding of the Knudsen layer: the work of Cercignani and his co-workers 
being worthy of particular comment in this respect (Cercignani 1962). Cercignani’s 
approach has been to use simplified models of the molecular scattering process, 
thus enabling exact, analytic solutions of the linearized Boltzmann equation to 
be obtained. Complementary work by Loyalka & Ferziger (1968) has employed 
the variational method with more realistic scattering models. Irrespective of 
the method of solution of the Boltzmann equation, the general conclusion reached 
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by all workers is that the macroscopic quantities Qi(x) (where Qi refers to density, 
velocity, heat flux, etc.) can always be written in the following form: 

Q i ( x ) = Q .  Y Y  ( x 1 + Q P ( x ) ,  (1) 

with x the distance from the wall. 
Apart from possibly a constant factor, QYY(x) is the value obtained from the 

Chapman-Enskog approach, and it usually dominates the solution a few mean 
free paths from the surface at II: = 0. Q F ( x )  describes the Knudsen layer, and 
is generally small a few mean free paths from x = 0. 

The purpose of the present paper is to examine the analytical nature of Q P , ,  
in more detail than has previously been done. We shall accomplish this by 
studying the existence of elementary solutions of the transport equation in the 
form h(c, x )  = &(c) e-vz. (2) 

The allowed values of v will be studied for velocity and temperature variations 
using the hard-sphere model of molecular scattering. 

2. Basic theory 
If the solution to the non-linear Boltzmann equation is written as 

f ( c ,  4 = f&C) { 1 + h(c, 41, (3) 

where fo(c) is the equilibrium Maxwell-Boltzmann distribution at tempera- 
ture To, and h is a small perturbation, then the equation may be linearized by 
neglecting terms of O(h2) and higher. The result can be written in the following 
form (Williams 1969): 

where we have assumed plane symmetry. V(c)  is the collision rate, and K (  ...) 
is the scattering kernel for molecular collisions. c is a reduced velocity defined by 
c = v ( ~ / Z ~ ~ ~ ) ~ .  The angular co-ordinates ,u and x are defined by Williams (1969, 
figure 1). 

Equation (4) has associated with it certain boundary conditions on the surfaces 
a t  x = f a  (say). These boundary conditions are determined by the nature of 
the particle wall interaction and can be written in the general form, 

f 

c,f(c, - a )  = -J c ; < o  dc’cj,F(c,c’)f(c’, -a ) ,  

for c, > 0. There is a similar condition a t  x = +a with the signs of c, and cj, 
reversed. r(c, c’) is the wall-particle scattering kernel. We shall not comment 
further on these boundary conditions, since they are not used explicitly in the 
present work. 
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NOW, if we assume that the problem of interest involves velocity and tem- 
perature changes, we shall require an equation for the flow velocity parallel to 
the surface. i.e. 

where 

Also, we require the temperature T(z) ,  namely 

or 

where 

(9) 

Equations for g and q5 may be obtained directly from (4). Thus, after using the 
expansion of K ( .  . .) in Legendre polynomials (Williams 1969), we find 

and 

I ; (p) / “  dc’c’2e-c’p K,(c,c’)S’ dp’~ (p ’ ) f ) (c ’ ,p ’ ,x ) .  (11)  
- 22+1 

= c y  
z=o 0 -1 

These are the basic equations for study. 

3. The eigenvalue problems 

following forms : 
As explained in the introduction, we shall seek solutions to (10) and (1 1) in the 

(12) g(c, p, 4 = SAC, P)  e-”x, 
and $(‘>p> = $ K ( ‘ > p )  e-Kx* (13) 

The allowed values of v and K will now be studied. 

eigenvalue problems : 
Inserting (12) and (1  3) into (10) and (1  l), respectively, leads to the following 

and 
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yhere y e  have abbreviated the right-hand sides of (10) and (1 1) by the operators 
0, and Q1, respectively. 

In  order to calculate the eigenvalues v and K we divide by the quantities in 
square brackets on the left-hand sides of (14) and (15), multiply by PE)(p) and 
Pm(p), respectively, and integrate over p( - 1 , l ) .  We then obtain 

m m 

g,(c) = ~ ~ ~ ( c ,  v ) J  dc' c'2e-c'' ~ ~ ( c ,  c') ga(c'), (16) 
l = l  0 

and 

where 

m 

I = O  
&(c) = Al,(c, K )  dc' c'2 e-@ Kl(c,  c') q51(c'), 

Also, we have defined 

B (c  v) = 
lm 9 

and 

We have, therefore, a set of coupled integral equations for the eigenvalues v 

In order to proceed further it is necessary to know the behaviour of V ( c )  with c .  
and K .  

If we choose the hard-sphere model of scattering, then 

We should note that, in arriving a t  (16) and (17), it was implicitly assumed 

(21) [ V ( c )  - vcpl =k 0, 

[ V(C) - K C p ]  0; ( 2 2 )  

that 

thus, in view of the nature of V ( c )  (namely V ( c )  + c as c + 00, and V ( c )  -+ 2/& 
as c + O), it is clear that v and K ,  as determined by (16) and (17 ) ,  are restricted as 

(23) 
follows : 

- 1 < Re (v) < 1, 

(24) 

In fact, the limits are really - Emin and Xmin, since we have chosen our units 
such that the minimum value of the scattering cross-section V ( c ) / c  = C ( c )  is 
equal to unity. Thus the discrete eigenvalues v and K have limit points at  f 1. 
For values of v and K exceeding these limit points the associated eigenfunction 
becomes singular. Indeed, in the range of v and K lying between 1 and co and - 1 
and - 00, g, takes the form, 

-1 < R e ( K )  < 1. 

m A  1 

where the symbol P.  indicates that principal value integrals are involved in 
integration over g,, and 6(. . .) is the Dirac delta function. Similarly for # K .  Such 
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functions are known as singular eigenfunctions and, together with any discrete 
eigenfunctions arising from solutions of (16) and (17), can be shown to form a 
complete set (Koppel 1963; Grad 1964). 

The purpose of the present work is to investigate the existence of the discrete 
eigenvalues lying in the range ( -  1,l). Bearing in mind the conservation laws, 
it is not difficult to see that the components of the kernel K(c ,  c’) obey the follow- 
ing relationships, namely 

V ( c )  = IOm dc’ c’2 ecC“ K,(c,  c’) ,  (26) 

c2V(c) = dc’ c’4 e-c“ K,(c,  c ’ ) ,  

cV(c)  = dc’~’3e-c’~ K,(c ,  c’) ,  
!Om 

where KO and K ,  are given explicitly for hard-spheres in the appendix. 
With the use of (28), it  is easy to see that (16) has the solution 

9dC) = 4 . 1 9  (29) 

corresponding to the double eigenvalue v = f 0. This corresponds to momentum 
conservation and is related to the asymptotic Chapman-Enskog solution. 

With (26) and (27), we note that (17) has solutions 

and 

each corresponding to a double eigenvalue at K = f. 0. 
Equations (30) and (31) also correspond to the Chapman-Enskog part of the 

solution. 
The question of most interest is that of the existence of any non-zero eigen- 

values in the range ( - 1, l), for these will govern the relaxation process from the 
boundary plane. Clearly, it is not possible to solve (16) and (17) in complete 
generality. However, it is clear that any non-zero eigenvalues are real and occur 
in the form & v. Our procedure is to retain only the first term in the expansions 
of the scattering kernel. Thus, (16) becomes 

r m  

q,(c)  = B,,(c ,  v ) J  -- dc‘c’2e-C’ZK,(c ,c ‘ )g l (c ’ ) ,  
0 

and (1 7) becomes 

where A,, and B,, are given explicitly by 

and 

A 1 ---log(-) C(C) 4- K 
O0 - 2CK C(C)-K ’ 

(32) 

(33) 

(34) 

(35) 

where we have set V ( c )  = cX(c). 

a later section. 
The probable error involved in this truncation procedure will be discussed in 
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4. Numerical procedure 
Equations (32) and (33) are implicit eigenvalue problems for v and K. We find 

it more convenient, therefore, to introduce a fictitious eigenvalue, p(v), and to 
write (32) as 

p(v) gl(c) = Bll(c, v) dc‘ d2 e-c’a K,(c, c’)  g,(c’), (36) 
1 0 -  

and similarly with&) for (33). Equation (36) is now in canonical form, and when 
p = 1 it corresponds to the problem of interest. Our procedure therefore is to  
seekp(v) as a function of v and obtain the desired value of v as the root ofp(v) = 1 
or p ( ~ )  = 1 (Wood 1966). First, however, let us symmetrize (36), whence we find 

where 

(37) 

(38) 

and (39) 

We note that Hv(c, c’) = HJc’, c). 
We are now in a position to apply the standard methods of numerical analysis 

for the eigenvalue p(v). Thus, we approximate the integral term on the right- 
hand side of (37) by a Gauss quadrature, namely 

Hv(c, c ’ )  = cc’ e-*(c*+c’2)Kl(c, c ’ )  [Bll(c, v )  Bl1(c‘, v ) ] t .  

where the Gaussian interval ( - 1,l) has been transformed to the interval (0, c T ) ,  
and wi and ci are the corresponding Gaussian weights and abscissae, respectively. 
The infinite interval in c has, for practical reasons, been reduced to the finite 
range (O,c,). We find that cT = 6 is sufficiently high to guarantee an acceptable 
accuracy in the eigenvalue. 

If we now choose values of c = cj, and define 

and 

then we can write the eigenvalue problem (37) as 

Hii = 3{wiwjcicj Bll(ci, v) Bll(cj, v) exp ( - c3 - c;)}* K(ci, ci), (42) 

N 

i= l  
pBj = x HijBi (j = 1, ..., N ) ,  

or, in matrix notation, as 
(H - P I )  B = 0. 

(43) 

(44) 

The method of Householder is now used to transform the matrix H to tri- 
diagonal, symmetric form. Then, with the methods of Sturm sequences and bisec- 
tion, we can find as many eigenvalues as are required. 

In practice, we have employed 32, 48 and 64 point Gauss quadrature, and a 
Richardson extrapolation was then applied to give the final result for p(v) .  The 
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results for p(v) are shown in figure 1. Only two eigenvalues are shown p,(v) and 
p I ( v )  since these contain all the relevant information. In  view of the fact that 
the kernel HJc, c‘ )  is square integrable, any other p’s are less than pl. Indeed, 
it can be shown by functional analytic methods that 

/ o m d c / y d c ’  (Hv(c,c’)(z > po > p1 > ... > 0 

(Riesz & Sz-Nagy 1955). p,(v) takes the value unity at Y = 0 and increases 
monotonically to the value 1.218 at Y = 1. It corresponds therefore to the 
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conservation of momentum condition discussed earlier. p l (v )  starts at 0.62 at v = 0 
and rises monotonically to the value 0.790 a t  v = 1. Since p l (v )  < 1 for all v ,  
we may conclude that (36) has no non-zero eigenvalues in the range ( - 1 , l ) .  

Passing now to the equation of $o(c), and calculating P ( K )  in the manner de- 
scribed above, we arrive at  figure 2. po and p1 are both equal to unity at  v = 0 
and they correspond to the conservation of mass and energy in the Chapman- 
Enskog solution. pz cuts the line p = 1 at K~ = 0.975. p3 < 1 for all K .  We may 
conclude therefore that there are two non-zero discrete eigenvalues in the range 
( -  1 , l )  situated at  K,, = rt 0.975. 

As a confirmatory check on our results we have also calculated p ( v )  for the 
relaxation of a neutron gas in a proton gas moderator (Williams 1966a, b, 1968). 
The equation to be solved is identical to (33) but with Ko(c, c') given by (A 3) in 
the appendix. po(v)  and p l (v )  were obtained. p,(v) is equal to unity at v = 0 and 
rises to 1.335 at v = 1. p l ( v )  is equal to 0.47 at v = 0 and rises monotonically to 
the value 0.740 at v = 1, thus indicating that there are no non-zero discrete 
eigenvalues in the range ( -  1 , l ) .  This same problem has also been solved by a 
WKB method (Williams 1968), from which we also obtained pl( l )  = 0.740. 
This agreement gives us confidence in our calculations of the gas problems dis- 
cussed above. 

5. General form of solution 
In  view of the allowed values of v and K we can now write down the general 

form of the solution for problems involving velocity and temperature variations. 
In velocity problems, for example, we can write for g(c,p, z): 

where gasy(c, p, x) is the asymptotic, Chapman-Enskog solution, and the integral 
terms represent the contribution from the singular eigenfunctions. The unknown 
constants in gasy, and A ( v )  and B f v ) ,  are obtained from the symmetry and 
boundary conditions of the problem and the solution of certain singular integral 
equations (Cercignani 1962). From this solution we see that the flow velocity 
q(x) can be written in the form 

(46) 
Lo 

q(s) = qasy(x) +I {ct(v)e-vX+,8(v) eYx}dv. 
1 

If we concentrate on Kramers' problem (Williams 1969), then clearly P(Y) = 0, 
and the Knudsen-layer effect decreases according to the integral term 

a ( v )  e-vxdv. 

Thus the asymptotic flow qasy(x) should be fully established after about two 

In the case of temperature variations, the general form of $(c,,uJx) becomes 
maximum mean free paths from the boundary. 

$(c9p,x) = $a8y(cJpU,Z) + A o g K o ( c , Y ) e - K ~ + A l g - K o ( c , Y )  ewox 
P m  f m  

+J A ( ~ ) g , ( c , p ) e - ~ " d ~ +  J1 B ( ~ ) g _ , ( c , , a ) e ~ ~ d ~ .  (47) 
1 
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Here we have the additional exponential terms exp ( & K ~ Z )  due to the discrete 
0-975. For a temperature slip problem in a half-space, (47) eigenvalues a t  tc0 = 

would lead to the following form for the temperature distribution: 

T,,,(z) being the Chapman-Enskog value. 
Since the exponential term decays, in general, less rapidly than the integral 

one, we can infer that temperature (and also density) perturbations extend out 
further from the surface than velocity ones, i.e. the thermal Knudsen layer is 
‘thicker’ than the velocity Knudsen layer. In practice, however, because of the 
proximity of K~ to unity, it  is unlikely that this difference will be particularly 
marked. 

6. Summary and conclusions 
By studying the existence of elementary solutions of the Boltzmann equation, 

we have been able to build up a picture of the structure of the thermal and 
velocity Knudsen layers. Before any definitive conclusions can be drawn, how- 
ever, it is clear that the effect of the assumptions involved in our calculations 
must be assessed. The most restrictive of these assumptions is the truncation 
of the Legendre expansion coefficients of the scattering kernel. We cannot yet 
state directly how this will effect the results; but a similar approximation is 
often made in neutron transport theory problems, where, by comparison with 
more accurate calculations, it does not seem to effect the general conclusions to 
any great extent. Physically, the truncation corresponds to a neglect of the 
correlation between energy loss and angle of scattering during a collision; thus 
it tends to underestimate the forward bias of scattering in the laboratory system 
of co-ordinates. In view of the fact that we can interpret K~ as an inverse relaxa- 
tion length governing the rate a t  which the perturbed distribution a t  the wall 
relaxes into the asymptotic state, it  seems reasonable to expect that neglect of 
the forward scattering bias will tend to overestimate K ~ .  Thus, inclusion of 
additional terms ‘in the scattering kernel would increase the importance of the 
discrete eigenvalue. It might even be sufficient to produce a discrete eigenvalue 
in the velocity problem; but this is unlikely, since pl( 1) in that case is substantially 
less than unity. 

Extension of the present method to other scattering models would be interest- 
ing. However, it should be noted that most of the molecular scattering models in 
current use (for example, the inverse power law models) have an infinite mean 
free path. This, of course, is spurious, as a quantum mechanical calculation will 
show; but it has serious mathematical consequences, and cannot be incorporated 
into the method described in this paper. 

A number of synthetic scattering kernels are in use, the modified BGK 
model of Cercignani being typical. This model, however, quite clearly has no 
discrete, non-zero eigenvalues, and solutions of the Boltzmann equation obtained 
from its use always have the Knudsen layer in the integral form. It is possible 
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that the hierarchy of models proposed by Loyalka & Ferziger (1  967) will contain 
discrete eigenvalues, but, as yet, no numerical work has been performed. 

Finally, it is worth noting that the space-eigenvalue problems discussed above 
have their analogies in the time domain (Grad 1963; KugEer & Williams 1967; 
Rahman & Sundaresan 1968), and also in the space-time domain (Wang-Chang 
& Uhlenbeck 1952; Sirovich & Thurber 1963; Grad 1966; Buckner & Ferziger 
1966). 

Appendix 
flcattering kernel for the hard-sphere gas 

8c’ 4 4 
47r 34n 15477 

c2c’2K1(c, c’) = - + 4(c’2- 1)  ec”erf (c’) + -- c’3c2- __ c‘5 (c’ < c). 

(A 2) 
For c’ > c, interchange c’ and c. 

Scattering kernel for the neutron-proton gas 

cc’K,,(c,c’) = 2ee‘’erf (c ’ )  (c‘ < c), 

(c‘ > c). = 2ecZ erf ( c )  
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